Name of the project	AP19679864 Technology of fractional sorption separation
1 5	of molybdenum and tungsten by ion-exchange resins from
	technological solutions
Relevance	Worldwide, there is a growing demand for refractory
	metals, which are necessary for modern branches of
	science and technology. Kazakhstan has a significant
	reserve of refractory metals. At enterprises for the
	extraction and processing of many metals man-made
	waste remains after flotation enrichment, which includes
	rare metals in particular refractory metals. In recent years
	more and more attention has been paid to the processing of
	secondary resources of tungsten and molybdenum
	In real objects, the ratio of molybdenum and tungsten
	content differs significantly but it is their ratio that affects
	the separation of metals. Therefore, it is necessary to study
	the effect of the Mo and W ratio in industrial solutions as
	well as the effect of other related metals on the processes
	of tungsten separation. The separation of molybdenum and
	tungsten by the sorption method in a dynamic mode on
	synthetic ion exchange resins is an economically
	advantageous process due to the simplicity of the
	technological scheme and inexpensive equipment. The
	range of commercial ion exchange resins is quite wide, but
	not all resins are suitable for the separation of Mo and W.
	Ion exchange resins D301 and Purolite A830 are widely
	used to separate Mo and W. In this project, we want to
	modify these resins to increase the efficiency of sorption
	separation of molybdenum and tungsten.
Purpose	The aim of the project is to develop a technological
_	scheme for the fractional sorption separation of
	molybdenum and tungsten with modified ion exchange
	resins from technological solutions
Objectives	- to study the effect of the ratio of molybdenum and
	tungsten content on their separation;
	- to investigate the efficiency of metal sorption with ion-
	exchange resins;
	- to choose the optimal sorbent for the separation of
	molybdenum and tungsten;
	- modify ion exchange resins;
	- to test the sorption of molybdenum and tungsten with
	modified sorbents;
	- to choose the optimal sorption mode with modified
	sorbents for the separation of molybdenum and tungsten;
	- process the results and determine the precision;
	- to develop a technological scheme for the sorption
	separation of molybdenum and tungsten.
Expected and achieved results	As a result of the project, the effects of the ratio of
	molybdenum and tungsten content in technological
	solutions on the separation of metals will be studied;
	sorption of metals with ion-exchange resins was carried

	out ion-exchange resins were modified a technological
	scheme for the separation of molyhdenum and tungsten
	was developed, it is planned to publish articles in peer
	was developed; it is planned to publish articles in peer-
	reviewed scientific publications in the scientific direction
	of the program, included in 1 (first), 2 (second) or 3 (third)
	quartiles in the Web of Science database and (or) having a
	CiteScore percentile in the Scopus database of at least 50
	(fifty); as well as in publications recommended by
	COXON; at least 1 application for a patent for a utility
	model and (or) inventions has been filed. The results of the
	project will be reflected in 1 PhD and 1 Master's thesis.
Research team members with	1. Ismailova Akmaral Gazizovna, Candidate of Chemical
their identifiers (Scopus Author	Sciences:
ID. Researcher ID. ORCID. if	Web of Science Researcher ID - GLR-6827-2022
available) and links to relevant	ORCID: https://orcid.org/0000-0002-5555-2705
profiles	Scopus ID: 57193336562
promes	2 Rashit Dilyara Rashitoyna DhD doctoral student
	2. Rashit Dilyara Rashitovna, ThD doctoral student
	ORCID: 0000-0003-3/11-8/95
	3. Elena Viktorovna Zlobina, Candidate of Chemical
	Sciences, Associate Professor
	Scopus ID: 41262845500
	4. Akanova Gulsara Zhakashovna, PhD doctoral student
	ORCID: 0000-0003-3711-8793
List of publications with links to	-
them	
Patents	-

Akmaral Gazizovna Ismailova, PhD, Project Manager

Rashit Dilyara Rashitovna, PhD doctoral student

The research group of the AR19679864 project

The research group of the AR19679864 project